12 research outputs found

    Subsequent Event Risk in Individuals with Established Coronary Heart Disease:Design and Rationale of the GENIUS-CHD Consortium

    Get PDF
    BACKGROUND: The "GENetIcs of sUbSequent Coronary Heart Disease" (GENIUS-CHD) consortium was established to facilitate discovery and validation of genetic variants and biomarkers for risk of subsequent CHD events, in individuals with established CHD. METHODS: The consortium currently includes 57 studies from 18 countries, recruiting 185,614 participants with either acute coronary syndrome, stable CHD or a mixture of both at baseline. All studies collected biological samples and followed-up study participants prospectively for subsequent events. RESULTS: Enrollment into the individual studies took place between 1985 to present day with duration of follow up ranging from 9 months to 15 years. Within each study, participants with CHD are predominantly of self-reported European descent (38%-100%), mostly male (44%-91%) with mean ages at recruitment ranging from 40 to 75 years. Initial feasibility analyses, using a federated analysis approach, yielded expected associations between age (HR 1.15 95% CI 1.14-1.16) per 5-year increase, male sex (HR 1.17, 95% CI 1.13-1.21) and smoking (HR 1.43, 95% CI 1.35-1.51) with risk of subsequent CHD death or myocardial infarction, and differing associations with other individual and composite cardiovascular endpoints. CONCLUSIONS: GENIUS-CHD is a global collaboration seeking to elucidate genetic and non-genetic determinants of subsequent event risk in individuals with established CHD, in order to improve residual risk prediction and identify novel drug targets for secondary prevention. Initial analyses demonstrate the feasibility and reliability of a federated analysis approach. The consortium now plans to initiate and test novel hypotheses as well as supporting replication and validation analyses for other investigators

    Electron and hole spin cooling efficiency in InAs quantum dots: The role of nuclear field

    Get PDF
    International audienceThe spin dynamics of a resident carrier, hole or electron, in singly charged InAs/GaAs quantum dots has been measured by pump-probe experiments. The relative strength of the hole to the electron hyperfine couplings with nuclei is obtained by studying the magnetic-field dependence of the resident-carrier spin polarization. We find, in good agreement with recent theoretical studies, that the hole hyperfine coupling is ten times smaller than the electron one

    AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity.: AMPK in skeletal musclemetabolic adaptation

    No full text
    International audience: AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that plays a central role in skeletal muscle metabolism. We used skeletal muscle-specific AMPKα1α2 double-knockout (mdKO) mice to provide direct genetic evidence of the physiological importance of AMPK in regulating muscle exercise capacity, mitochondrial function, and contraction-stimulated glucose uptake. Exercise performance was significantly reduced in the mdKO mice, with a reduction in maximal force production and fatigue resistance. An increase in the proportion of myofibers with centralized nuclei was noted, as well as an elevated expression of interleukin 6 (IL-6) mRNA, possibly consistent with mild skeletal muscle injury. Notably, we found that AMPKα1 and AMPKα2 isoforms are dispensable for contraction-induced skeletal muscle glucose transport, except for male soleus muscle. However, the lack of skeletal muscle AMPK diminished maximal ADP-stimulated mitochondrial respiration, showing an impairment at complex I. This effect was not accompanied by changes in mitochondrial number, indicating that AMPK regulates muscle metabolic adaptation through the regulation of muscle mitochondrial oxidative capacity and mitochondrial substrate utilization but not baseline mitochondrial muscle content. Together, these results demonstrate that skeletal muscle AMPK has an unexpected role in the regulation of mitochondrial oxidative phosphorylation that contributes to the energy demands of the exercising muscle.-Lantier, L., Fentz, J., Mounier, R., Leclerc, J., Treebak, J. T., Pehmøller, C., Sanz, N., Sakakibara, I., Saint-Amand, E., Rimbaud, S., Maire, P., Marette, A., Ventura-Clapier, R., Ferry, A., Wojtaszewski, J. F. P., Foretz, M., Viollet, B. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity

    Impact of Selection Bias on Estimation of Subsequent Event Risk

    No full text
    Background - Studies of recurrent or subsequent disease events may be susceptible to bias caused by selection of subjects who both experience and survive the primary indexing event. Currently, the magnitude of any selection bias, particularly for subsequent time-to-event analysis in genetic association studies, is unknown. Methods and Results - We used empirically inspired simulation studies to explore the impact of selection bias on the marginal hazard ratio for risk of subsequent events among those with established coronary heart disease. The extent of selection bias was determined by the magnitudes of genetic and nongenetic effects on the indexing (first) coronary heart disease event. Unless the genetic hazard ratio was unrealistically large (>1.6 per allele) and assuming the sum of all nongenetic hazard ratios was <10, bias was usually <10% (downward toward the null). Despite the low bias, the probability that a confidence interval included the true effect decreased (undercoverage) with increasing sample size because of increasing precision. Importantly, false-positive rates were not affected by selection bias. Conclusions - In most empirical settings, selection bias is expected to have a limited impact on genetic effect estimates of subsequent event risk. Nevertheless, because of undercoverage increasing with sample size, most confidence intervals will be over precise (not wide enough). When there is no effect modification by history of coronary heart disease, the false-positive rates of association tests will be close to nominal

    Impact of Selection Bias on Estimation of Subsequent Event Risk

    No full text
    Background - Studies of recurrent or subsequent disease events may be susceptible to bias caused by selection of subjects who both experience and survive the primary indexing event. Currently, the magnitude of any selection bias, particularly for subsequent time-to-event analysis in genetic association studies, is unknown. Methods and Results - We used empirically inspired simulation studies to explore the impact of selection bias on the marginal hazard ratio for risk of subsequent events among those with established coronary heart disease. The extent of selection bias was determined by the magnitudes of genetic and nongenetic effects on the indexing (first) coronary heart disease event. Unless the genetic hazard ratio was unrealistically large (>1.6 per allele) and assuming the sum of all nongenetic hazard ratios was <10, bias was usually <10% (downward toward the null). Despite the low bias, the probability that a confidence interval included the true effect decreased (undercoverage) with increasing sample size because of increasing precision. Importantly, false-positive rates were not affected by selection bias. Conclusions - In most empirical settings, selection bias is expected to have a limited impact on genetic effect estimates of subsequent event risk. Nevertheless, because of undercoverage increasing with sample size, most confidence intervals will be over precise (not wide enough). When there is no effect modification by history of coronary heart disease, the false-positive rates of association tests will be close to nominal
    corecore